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In highly frustrated calamitic nematic liquid crystals, a strong elastic distortion can be confined on a few
nanometers. The classical elastic theory fails to describe such systems and a more complete description based
on the tensor order parameter Q is required. A finite element method is used to implement the Q dynamics by
a variational principle and it is shown that a uniaxial nematic configuration can evolve passing through
transient biaxial states. This solution, which connects two competing uniaxial nematic textures, is known as
“nematic order reconstruction.”
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I. INTRODUCTION

Common nematic liquid crystals used, for instance, for
electro-optical applications, are aggregates of calamitic mol-
ecules without any positional order and whose long axes are
in average aligned along a common direction �1�. The most
known classical elastic model �2–4� describes a nematic by
means of two parameters: The director n, a unit vector point-
ing along the local average molecular orientation, and the
scalar order parameter S, which indicates the amount of ori-
entational order. Most phenomena occurring in the nematic
phase fit well within this classical description, but, when the
elastic distortion occurs over a length scale comparable with
the nematic coherence length � �1�, the molecular order may
be significantly altered, and a more complete phenomeno-
logical description, using the tensor order parameter Q, is
required �5�. The eigenvectors e1, e2, and e3 of Q are the
directions of the preferred molecular orientations and the as-
sociated eigenvalues �1, �2, and �3 represent the degree of
order along each corresponding direction. Calamitic nematic
materials can present three different phases �isotropic,
uniaxial, biaxial� which can be distinguishable by consider-
ing �1, �2, and �3. In the isotropic phase the calamitic mol-
ecules are completely disordered, without any positional and
orientational order, and all the three eigenvalues vanish. In
this phase, the optical behavior of the material is the same as
an ordinary isotropic fluid. The uniaxial nematic phase pre-
sents a unique optical axis, described by the eigenvector ei
�n associated to the maximum eigenvalue �max, which gives
the scalar order parameter S= �3 /2��max. In the biaxial nem-
atic phase, all the eigenvalues are different and the Fresnel
ellipsoid has two optical axes �1�.

The Q tensor description predicts biaxial domains inside a
calamitic nematic phase, as found, for instance, by Sluckin,
who demonstrated that, around the core of a defect, the
uniaxial nematic order is replaced by a biaxial ring, which
connects two orthogonal uniaxial states �6�. Another example
is given by Palffy-Muhoray, who predicted that, in a hybrid
nematic cell, below a critical distance, the free energy of the
system is minimized by a biaxial solution, which connects

the two orthogonal uniaxial states promoted by the surfaces
�7�. Indeed two uniaxial nematic orthogonal states can be
connected by the eigenvector rotation of Q, keeping the ei-
genvalues constant, or by eigenvalues exchange, letting one
eigenvalue of Q grow at the expense of another one �8�. In
the latter case the two uniaxial states are connected through a
biaxial state. The biaxial order decays in space with a typical
biaxial coherence length �b �9�.

Recently, the eigenvalues exchange model has been used
to describe experimental results in two relevant cases: Nano-
confined nematic samples in the presence of hybrid anchor-
ing conditions �10,11� and thin � cells submitted to a strong
electric field �8,12–14�. First calculations have been carried
out by using a numerical approach based on a finite differ-
ence method on uniform grid points �8�. However, being the
biaxial behavior characterized by two characteristic lengths,
the biaxial coherence length �b and the thickness of the cell
d, which can easily differ by two orders of magnitude, more
sophisticated computational methods are suitable.

In this paper the Q tensor model is implemented by using
a finite element method �FEM� with an adaptive mesh. The
time-dependent Q tensor governing equations are derived by
balancing the dissipative function and the free energy varia-
tions. They are solved by discretizing them in time via an
explicit Euler method. The tensor order parameter Q is
solved by the Galerkin’s method �15,16�, while the potential
profile is updated by the Ritz’s method �15,16�. Lagrange
quadratic basis functions are employed to interpolate the ten-
sor order parameter and the electric potential over the space.
With respect to the previous Q tensor description �8�, the
new model has been improved by adding a third-order term
into the elastic density energy, to remove the degeneracy
between splay and bend textures and to take into account the
temperature dependence of the elastic constants. Moreover,
weak and strong anchoring strength conditions are modeled
as well.

It is worth to mention that, even though theory based on
the continuum model are supposed to work only when the
distortion characteristic length is much larger than the mo-
lecular size, the Q tensor model works well also down to a
few nanometers �17–19�. Moreover, very recently, it has
been demonstrated that complex molecular dynamical simu-
lations of a nanoconfined nematic twist cell predict similar*lombardo@fis.unical.it
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results of that obtained by the continuum Q tensor theory
�20�.

The paper has the following structure: In Sec. II we intro-
duce the full Q tensor model used to describe the dynamical
behavior of a nematic phase; in Sec. III we present the main
numerical results describing recent experimental evidences
on biaxial domains inside frustrated calamitic liquid crystal
systems. We also extend results of a very recent semianalyti-
cal study on nematic defects subjected to an electric field,
including their dynamical behavior. The last section contains
our conclusions. Some technical details about the used FEM
technique are described in the Appendix.

II. MODEL

A liquid crystal material tends to assume a ground state
that minimizes its free energy, which involves its thermody-
namical equilibrium state, surface and bulk distortions, and
any coupling with external fields. The free energy minimiza-
tion requires the determination of minimizer’s �or more gen-
erally of stationary points� of nonlinear functionals of the
state variable. As previously stated, two main theories are
widely used in nematostatic: The Frank elastic theory, which
considers the director as the main state variable, and the
Landau–de Gennes approach based on a tensor field descrip-
tion. The Frank theory has generally received more analyti-
cal and computational attention. As the director is repre-
sented by a unitary vector n, the nematic distortions are
always represented as spatial director rotations, usually at
constant S. This implies that topological defects appear as
mathematical singularities and biaxial domains in a calamitic
nematic phase are never allowed. Moreover, from a numeri-
cal point of view, highly distorted configurations, in which
the angle between two neighboring directors may become
larger than � /2, determine technical difficulties for a proper
description of the distortion energy �21�.

To generalize the Frank continuum model, de Gennes pro-
posed a Ginzburg-Landau expansion for the free energy F of
the liquid crystal close to the nematic-isotropic phase transi-
tion temperature. The expansion involves the order param-
eter Q and its spatial derivatives. Nematic distortions are
now described by tensor order gradients and biaxial nematic
configurations are allowed. In addition, the dynamics of the
tensor order parameter is also a crucial issue for the liquid
crystal behavior. Therefore, in the following, we first present
a general approach based on the Q tensor formalism and then
we apply this model to quantitatively describe two relevant
scientific problems: The bulk and the surface nematic order
reconstruction induced by an electric field.

A. Tensor order parameter

Biaxial configurations of calamitic nematics can be de-
scribed by a symmetric traceless tensor of rank two, Q,
which can be expressed as

Q = S1�n � n −
1

3
I� + S2�m � m −

1

3
I� , �1�

where n, m, and n�m are the eigenvectors of Q and the
corresponding eigenvalues are �2S1−S2� /3, �2S2−S1� /3, and

−�S1+S2� /3, respectively �22�. In the case of uniaxial order,
two of the eigenvalues are equal, so either S1=0 or S2=0 or
S1=S2, and the largest eigenvalue is 2S /3, where S is S1 or
S2. In the biaxial states, the three eigenvalues are all different
and the maximum biaxiality arises when one eigenvalue is
zero. In the isotropic state all three eigenvalues vanish.

Nematic configurations are fully defined by five degrees
of freedom: Namely, three Euler angles, � ,� ,�, that define
the orientation of the two orthogonal vectors, n and m, and
the two scalar order parameters, S1 and S2. However, when
the zenithal angle is �=� /2, the azimuthal angle � is unde-
fined and the solution is not unique �21�.

To avoid difficulties due to the multivaluedness of the
Euler angles, we restate the problem in terms of five inde-
pendent components of Q,

Q = �q1 q2 q3

q2 q4 q5

q3 q5 − q1 − q4
	 �2�

Now, the use of the components qi remove the degeneracy
when �=� /2.

B. Dynamical evolution of Q

The dynamical equations for calamitic nematic liquid
crystals can be determined by means of a variational prin-
ciple originally put forward by Rayleigh �23�. For a conser-
vative system, this principle asserts that the Rayleigh dissi-
pation function evolves at a minimum rate, relatively to all
its virtual values. This results in the balance of energy varia-
tions given by �24,25�

	D + 	Ḟ = 0, �3�

where D is the Rayleigh dissipation function and Ḟ is the
rate of change of the free energy.

Neglecting the backflow effect, the dissipation density
function D is expressed in the positive-definite quadratic
form of a time derivative of Q,

D = 

V

DdV = 

V


 tr Q̇2dV , �4�

where V is a volume and 
 is related to Leslie’s rotational
viscosity 
1=
�Sexpt, where Sexpt is the experimental scalar
order parameter �1�.

The variation of the dissipation function can be deter-
mined from the expression �4� and its density is

�D

�qi
	qi = 2
 tr�Q̇

�Q

�qi
�	q̇i, �5�

where q̇i is the time derivative of qi.
The relevant terms of the free energy F include Fd, which

is the elastic energy of the nematic texture distortion, Ft,
which is the thermotropic energy dictating the preferred ma-
terial phase, Fe, which is the electric energy due to an exter-
nal electric field and Fs, which is the surface energy, i.e., the
nematic molecular interaction with the confining substrate.

F reads as
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F = Fd + Ft + Fe + Fs = 

V

�Fd + Ft + Fe�dV + 

A

FsdA ,

�6�

where Fd, Ft, Fe, and Fs are the corresponding energy den-
sities and A is the boundary surface of the volume V. It is
assumed that the thermotropic energy density Ft and the sur-
face energy density Fs depend only on Q,

Ft = Ft�Q� ,

Fs = Fs�Q� ,

whereas the elastic energy Fd and the electric energy Fe
depend on Q and all of its first-order spatial derivatives, i.e.,

Fd = Fd�Q,�Q� ,

Fe = Fe�Q,�Q� .

Higher order differentials of Q are neglected �1,22�.
The rate of the change of the free energy density is

	Ḟ = � �Fb

�qi
−

�

�xj
� �Fb

�qi,j
��	qi, �7�

where Fb=Fd+Ft+Fe is the bulk free energy density, “j” in
the subscript denotes differentiation with respect to the spa-
tial coordinate xj, and summation over repeated indices is
assumed. Since both the variations 	q̇i and the volume V are
arbitrary, the Eqs. �3�, �5�, and �7� can be restated together,

�D

�qi
=

�

�xj
� �Fd

�qi,j
� +

�

�xj
� �Fe

�qi,j
� −

�Ft

�qi
−

�Fd

�qi
−

�Fe

�qi

�i = 1, . . . ,5� . �8�

The solution of the system constituted by the five coupled
partial differential equations �8� is univocally determined if
suitable boundary conditions are imposed on the bounding
substrates. In the following, each term of the free energy
density and different boundary conditions are described in
detail.

C. Free energy density

The thermotropic energy density Ft term is expressed as a
Taylor expansion truncated at the fourth order around Q=0
�1�. A fourth-order expansion is sufficient to have the isotro-
pic and the nematic states as local minima of the free energy.
It is worth to mention that a sixth-order expansion would be
required in order to allow us a stable nematic biaxial state
�26�,

Ft = a tr�Q2� −
2b

3
tr�Q3� +

c

2
�tr�Q2��2. �9�

The coefficients a, b, and c are in general temperature de-
pendent, although usually it is assumed a=��T−T��=��T,
where �
0 and T� is the supercooling temperature, while b
and c are assumed temperature independent �1�. For any non-

positive value �T, the equilibrium order parameter Seq of a
uniaxial nematic system is given by

Seq��T� =
b

4c
�1 +
1 −

24ac

b2 � . �10�

Fd is the free energy density term associated with any spatial
gradient of Q. The symmetry of our material does not allow
all combinations of Q derivatives and the most general ex-
pression for Fd is �27�

Fd =
L1

2
� �Qij

�xk
�2

+
L2

2

�Qij

�xj

�Qik

�xk
+

L6

2
Qlk

�Qij

�xl

�Qij

�xk
, �11�

where Qij is the �i , j� element of Q and the elastic parameters
L1, L2, and L6 are related to the Frank elastic constants k11,
k22, and k33,

L1 =
1

6Seq
2 �k33 − k11 + 3k22� ,

L2 =
1

Seq
2 �k11 − k22� ,

L6 =
1

2Sexpt
3 �k33 − k11� .

It can be demonstrated that there are seven elastic terms of
cubic order �28� but only one, L6, included in Eq. �11�, en-
sures the correct mapping from the Q tensor to the Frank
energy and it allows us to remove the k11=k33 degeneracy
�29�.

The presence of an irrotational electric field, E=−�U,
gives rise to the electric energy density, which self-induces
an internal electric field due to the dielectric and spontaneous
polarization effects,

Fe = −
 DdE , �12�

where D is the displacement field and E is the electric field.
The constitutive equation which relates D, E, and the inter-
nal polarization P is

D = �0E + P = �0E + Pi + Ps = �0E + �0�E + Ps = �0�E + Ps,

�13�

where Pi and Ps are, respectively, the induced and the spon-
taneous polarizations. Pi depends on the dielectric suscepti-
bility � and on E. The quantity �0 is the vacuum electric
permeability constant and � is the dielectric tensor, which
describes the local anisotropy response of the nematic order-
ing to E. One common expression of � �22� is

� = �aQ + �iI , �14�

where �a and �i are, respectively, the anisotropic and isotro-
pic dielectric susceptibilities,

�a = ��� − ���/Seq,
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�i = ��� + 2���/3,

and �� and �� are the parallel and perpendicular dielectric
nematic constants.

The spontaneous polarization is assumed to derive only
from flexoelectric effects. Therefore, Ps is written in terms of
Q as �30�

Ps = ē � Q , �15�

where the ith component of Ps is

�Ps�i = ē
�Qij

�xj

and ē is the average flexoelectric coefficient, which is ex-
pressed as

ē =
e11 + e33

2Seq
,

where e11 and e33 are the splay and bend flexoelectric coef-
ficients of the nematics. Using Eqs. �12�–�15�, the electric
density energy Fe can be expressed as

Fe = −
 ��0�E + Ps�dE

= −
�0

2
��E� · E − Ps · E

= −
�0

2
��i��U�2 + �a � U · Q � U� + ē � Q · �U .

�16�

The boundary conditions at the liquid crystal interfaces are
taken into account by the surface term Fs. For rigid anchor-
ing, this is equivalent to impose the Dirichlet condition on
the surface,

Q = Qs, �17�

where Qs is the prescribed order tensor promoted by the
surface. In this case the boundary conditions are fixed and Fs
does not play any role. For weak anchoring, we must take
into account the interaction between the nematic molecules
close to the substrate and the substrate itself. In this case the
form of the interaction energy is given by

Fs =
Ws

2
tr�Q − Qs�2, �18�

where Ws is the anchoring strength and Qs is the value of the
tensor order parameter preferred by the surface. Expression
�18� is the generalization of the classical Rapini-Papoular
anchoring energy using the tensor formalism �31�. The stable
solution of Q must satisfy the system equations �8� and, on
the boundary, the Neumann condition

�Fs

�qi
+ � j

�Fb

�qi,j
= 0 �i = 1, . . . ,5� , �19�

where � j is the jth component of the outward vector normal
to the substrate. This expression allows us to impose on the

surface substrate uniaxial as well as biaxial conditions, since
the nematic phase is described by Qs.

Moreover, the electric field E inside the cell must satisfy,
in the static case with no free charges, the electrostatic Max-
well equations,

� · D = 0, �20�

� � E = 0. �21�

Equation �21� is automatically satisfied, because the electric
field is conservative. Equation �20� is then the governing
equation for the electric potential U,

0 = � · D = � · �− �0� � U + Ps� = 0. �22�

Solving Eq. �22� is equivalent to minimizing the electric en-
ergy density �16� with respect to U. By making the electric
potential U continuous through the cell, we ensure the stan-
dard conditions for the electrostatic: At material boundaries,
the component of the electric field parallel to the interface is
continuous and the normal component of the displacement
field is also continuous. Typically boundary conditions for
the potential U are

�i� fixed voltage on the electrodes;
�ii� spatial normal derivative of the potential equal to zero

on the outer boundaries of the supporting substrate where no
electrodes are present.

The first case corresponds to Dirichlet conditions, which
are implemented forcing the potential value on the electrodes
by matrix operations. Neumann conditions, corresponding to
the second case, are naturally satisfied with the finite element
method by assuming that the electric energy is totally con-
fined in the liquid crystal material as well as in the substrate
regions.

In addition to Dirichlet and Neumann conditions on Q
and U, we have also used a periodic boundary condition on
the lateral boundaries of the domain.

In the Appendix we describe the practical numerical pro-
cedures used to solve the resulting nonlinear system of par-
tial differential equations.

III. BIAXIAL DOMAINS INSIDE A CALAMITIC PHASE

As previously mentioned, recent experiments on highly
frustrated liquid crystal systems have shown that transient
bulk biaxiality can be mechanically induced in calamitic
nematic materials �10,11�. Moreover, the biaxial order recon-
struction in nematics also allows fast electric coherent
switching between two topologically inequivalent nematic
textures inside a � cell �8,32�. In fact, up to now, the � cell
is the main system used to experimentally investigate this
phenomenon �12–14,33,34�.

The � cell has sandwich geometry, with a thin film of
nematic contained between two flat glass plates. The align-
ment on both surfaces induces a uniform pretilt angle � with
strong anchoring energy. The two plates are oriented to admit
two topological different equilibrium nematic textures inside
the cell: In the first one the nematic director is almost parallel
to the surface plates with a slight splay distortion, without
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any torsion; in the second one, the nematic director presents
a mainly vertical alignment with a bend texture, which is
topologically equivalent to a twisted configuration, i.e., with
a torsion of � of the nematic texture itself. The splay and
bend nematic textures of the � cell have distinct optical
properties and they cannot be transformed one into another
with simple director rotations. The connection is only pos-
sible by breaking somewhere the starting nematic texture and
reconstructing it with or without the � torsion. This could be
achieved, for instance, by melting the nematic order in a
plane, but, in practice, the nematic biaxial order reconstruc-
tion is a mechanism which also enables an escape from to-
pological constraints, requiring less energy than full melting.

To model this transient biaxial phenomenon, we discretize
a 1-�m-thick one-dimensional � cell with quadratic finite
elements with Dirichlet anchoring conditions on the bound-
ary plates. The time-dependent Q configuration is the solu-
tion of the system composed by the five coupled Euler-
Lagrange equations �8� and by the additional partial
differential equation �22� for the electric potential U. The
initial splay configuration has a tilt angle which varies almost
linearly with z between �l=10° on the lower surface to �u

=−10° on the upper surface, with � measured with respect to
the surface. A fast rectangular pulse electric field, strong
enough to achieve the order reconstruction threshold, with
amplitude E=11.4 V /�m is applied at the time t=0 s for a
duration t=100 �s. The time step size for the calculation is
	t=0.1 �s. The numerical simulation has been carried out
by using typical calculation parameters for the nematic 5CB
�4-cyano-4�-n-pentylbiphenyl� for �T=−2 °C �35�. In this
case one has the biaxial nematic coherence length �b

=
L / �Seqb��3 nm. We have used a finer mesh in the center
�the minimum element size is 0.1 nm� and coarser in the rest
of the domain �with a maximum mesh size of 10 nm� since
we expect that the biaxial region will arise in the middle of
the cell.

Figure 1 shows, for different times, the distribution inside
the cell of the director n �eigenvector of Q associated to its
maximum eigenvalue�. At t=0 s �Fig. 1�a�� the texture is
slightly splayed and in the middle of the cell the director is
parallel to the two flat boundary surfaces. The application of
the electric field forces the nematic molecules to reorient in
the vertical direction, perpendicularly to the boundary plates.
At t=60 �s �Fig. 1�b��, the nematic molecules are every-

FIG. 1. One-dimensional representation of the nematic director configurations inside a 1-�m-thick � cell submitted to an external electric
pulse with amplitude 11.4 V /�m at different times after the electric field is switched on: �a� t=0, �b� t=60 �s, �c� t=70 �s, �d� t
=90 �s. The electric field is applied along the cell thickness.
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where parallel to the electric field except for three thin re-
gions: One in the middle of the cell and two surface layers,
where the nematic director keeps its initial quasiplanar ori-
entation. The maximum distortion arises in the center of the
cell: A biaxial region of thickness comparable with the biax-
ial coherence length �b starts growing to connect the homeo-
tropic upper and lower textures with the central planar ori-
entation. At t=70 �s �Fig. 1�c�� the biaxial wall is destroyed
and the initial splay texture is transformed into a bend one
�Fig. 1�d��. After the field is switched off �t
100 �s�, the
director begins a spontaneous viscoelastic relaxation.

In order to monitor the bulk order reconstruction, we use
the invariant measure of the biaxiality given in �8�,

B =
1 −
6�tr�Q3��2

�tr�Q2��3 . �23�

B varies between 0 and 1. In uniaxial states, B is zero. Its
maximum value corresponds to the case of a biaxial phase in
which one of the eigenvalues vanishes. The temporal evolu-
tion of the biaxiality B inside the � cell for the interval 0
� t�100 �s is shown in Fig. 2. The white color represents
the maximum value of the biaxiality, while the black color
corresponds to B=0. All the other possible values of biaxi-
ality are linearly mapped as gray levels between the white
and the black colors.

B remains almost equal to 0.1 close to the boundaries
where the strong anchoring prevents reorientation and it
grows in the center of the cell where the biaxial wall is
formed. At t=70 �s the nematic configuration in the center
of the cell becomes purely biaxial with B=1 and the transi-
tion to the bend texture shown in Fig. 1�c� takes place �see
also Fig. 3, which is an enlargement of Fig. 2, around t
=70 �s�. The biaxial region surrounding the center has a
size comparable with �b and looks like a crater of a volcano,
where B is zero inside and around the crater. The temporal
evolution of the biaxial order induced by the electric field
can be considered the dynamical equivalent of the spatial

order evolution inside a defect �6�. In both cases, two distinct
uniaxial orientations, perpendicular one to each other, are
connected by intermediate biaxial states.

This analysis can be extended also when the nematic or-
der reconstruction takes place close to a surface. The numeri-
cal calculation shows that, if the boundary conditions are not
symmetric, the biaxial wall will not appear in the middle of
the cell, but it could move toward one of the two boundary
plates �36�. A very recent theoretical study has investigated
the possibility to induce a surface order reconstruction on a
hybrid cell by means of an external electric field �37�. In
particular this approach has shown the influence of the elec-
tric field amplitude on the position and on the structure of a
line defect of one-half charge, neglecting its dynamical be-
havior. Now we use the time-dependent Q tensor equations
�8� in two-dimensional geometry to investigate how the core
structure is influenced by the electric field of amplitude Ea
and by the boundary surface as it moves inside the cell.

We now consider the 5CB at �T=−2 °C confined be-
tween two parallel plates in a rectangular region whose
thickness is dz=1 �m and whose length is dx=4 �m. The
length dx was chosen larger than the thickness dz to avoid
boundary effects on the defect line. Since �Q is expected not
to be homogeneous inside the cell, an adaptive mesh is em-
ployed which allows a finer discretization in the region of
large �Q. In particular, the domain is discretized in triangu-
lar elements in which Q is approximated by quadratic
Lagrange finite elements. As the biaxial coherence length is
�b�3 nm, we use a mesh of maximum size of a few ang-
strom around the defect and a few nanometers in the rest of
the domain. The boundary conditions used for the surface
plates to align the nematic molecules are homeotropic on the
upper plate and planar on the lower plate, with infinite an-
choring energies on both plates. These boundary conditions
are compatible with the germination of a line defect with
topological charge M =−1 /2. In the absence of an electric
field, the defect is located in the middle of the cell, its posi-
tion is stable and it is only determined by the boundary con-
ditions. The maximum biaxiality is reached in the ring sur-
rounding the core of the defect as shown in Fig. 4.

We also study the dynamics of the system in the presence
of an electric field strong enough to modify the structure of
the defect. We start at t=0 from the initial condition Qeq and

FIG. 2. One-dimensional dynamical representation of biaxiality
inside a 1-�m-thick � cell submitted to an external electric pulse in
the time interval 0� t�100 �s. The white color is associated to
the maximum value of the biaxiality, while the black color is asso-
ciated to the uniaxial phase. The vertical axis represents the cell
thickness, the time is represented along the horizontal axis. The
electric field is applied along the cell thickness.

FIG. 3. Enlargement of Fig. 2 around t=70 �s, when the biax-
ial wall disappears. Note the volcano structure assumed during its
dynamical evolution by the biaxial wall before it disappears. It is
reminiscent of the core of a nematic defect, as shown in Fig. 4.
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we apply a vertical electric field of amplitude Ea
=14 V /�m along the z axis for a time interval of tE
=150 �s. The time step for the calculation is 0.1 �s. The
electric field tends to enforce a homogeneous nematic align-
ment along the vertical axis. For E�Ea the defect core does
not vary its structure as it moves toward the bottom plate.
For higher electric field, the defect exhibits a dramatic
change in the core configuration as it interacts with the lower
surface substrate.

Figures 5 and 6 show the biaxiality B around the defect
core at different times in the presence of the electric field Ea.
Nematic molecules that are farther from the line defect re-
align sooner than the nematic molecules that surround the
defect, where it is concentrated the most on the elastic dis-
tortion. As a consequence, the line defect moves from its
initial position and it is pushed toward the bottom plate. For
t
10 �s, although the defect distance from the lower plate
is larger than the biaxial coherence length �b, the defect core
begins to lose its circular cross section and stretches along
the z direction. The infinite energy anchoring on the lower
surface influences the defect core structure: The nematic
molecules that are located below the biaxial defect core tend
to remain planar to the surface, opposing the electric torque
realignment. A biaxial region grows to connect the planar
surface nematic texture and the defect forming a structure
that looks like a comet tail. At the same time, the two com-
peting nematic alignments close to the lower plate tend to
establish a biaxial layer of thickness �2�b. This behavior is
stronger and stronger as the defect moves along the cell ap-
proaching the lower substrate, as shown in Figs. 5�b�–5�d�.
At the time t=40 �s �Fig. 6�a��, the distance between the
defect core and the lower surface becomes a few biaxial
coherence lengths and the defect starts to grow parallel to the
surface. Now, while the size of the defect core along the z
direction remains almost unchanged, the core dimension in
the x direction increases monotonically as the defect moves
toward the bottom surface. The defect totally loses its cylin-
drical symmetry extending in the horizontal plane. The core
structure and the surface biaxiality are mutually affected, as
shown in Figs. 6�b�–6�d�. For t�50 �s the distance of the
defect is comparable with the size of the biaxial ring sur-
rounding the defect core �i.e., �4�b�, here the defect merges
into the anchoring layer and the surface biaxiality increases.

At t=150 �s the defect core is completely stretched along
the x direction forming, a continuous biaxial wall on the
lower surface �Fig. 6�d��.

IV. CONCLUSION

A dynamical Q tensor model has been implemented using
a finite element method. This numerical implementation is
capable to handle arbitrary nematic liquid crystal confine-
ment geometry whether one, two or eventually three dimen-
sional. As examples we reported the dynamics of two calam-
itic systems, a � cell and a hybrid cell with a defect, both in
the presence of an electric field. In both cases an applied
electric field competes with the symmetry imposed to the
system by the boundary conditions and a biaxial transient
solution occurs to connect two competing nematic uniaxial
textures. For the � cell, the electric field induces a bulk
biaxial order reconstruction which destroys the nematic tex-
ture in one direction and reconstructs it in the orthogonal

FIG. 4. Two-dimensional representation of biaxiality inside a
vertical section of a hybrid cell of thickness 1 �m and width 4 �m
in the absence of electric field. The homeotropic alignment is given
by the upper boundary condition and the planar orientation by the
lower boundary condition. The defect presents the usual volcano
structure: The maximum biaxiality is around the core, while inside
the core the nematic phase is uniaxial.

FIG. 5. Time sequence of the biaxiality around the defect for the
electric amplitude Ea=14 V /�m at t=0 s �a�, at t=20 �s �b�, at
t=30 �s �c�, and at t=35 �s �d�. The electric field is applied along
the z axis.
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one. In the second case, asymmetric boundary conditions on
the cell determine a stable line defect and, by applying a
suitable electric field, a biaxial wall arises from the core
defect. When the defect approaches the planar surface, the
core stretches along the surface itself, increasing the biaxial-
ity of the surface layer.
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APPENDIX: MODEL OF THE Q TENSOR ORDER
PARAMETER

Modeling the dynamics of the Q tensor inside a nematic
cell in response to an external electric field generally starts
off with minimizing the free energy within the cell. How-
ever, due to the high nonlinearity of the free energy expres-
sion coupled with electric effects, a direct solution of the Q

deformation and the electric potential distribution is quasi-
impossible. Therefore, the dynamical modeling usually in-
volves an iteration process based on relaxation methods �21�:
At each time step, the liquid crystal free energy is minimized
to update the Q tensor profile and then this Q profile is used
to solve Gauss law to update the potential profile. The initial
distribution of Q can usually be preset by its boundary con-
ditions. The stability of its iterative updating scheme is an
important issue, which relies on a proper selection of updat-
ing time step �t �38�. The solution for the above-mentioned
iteration scheme includes two iterative steps:

�1� solving the Q distribution at a given potential profile;
�2� solving the potential distribution at a given Q profile.
A finite element method �FEM� is used to find the solution

of the nonlinear partial differential system of equations.

1. Finite element method implementation

a. Q tensor update formulations via Galerkin’s method

The high nonlinearity of Eq. �8� indicates that a direct
solution is difficult to obtain. However, the Galerkin’s
method, a weighted residual method, associated to a weak
formulation of the residual of the differential equations, can
bypass this difficulty �15�. Suppose we divide the domain �
into M element �e with N nodes. In each element domain
there are m nodes with m interpolation functions as well. In
each element domain �e.g., eth element� the local Q tensor
distribution can be interpolated by its m local node values
using m local shape functions as

q̃i
e = �

j=1

m

gij
e Wj

e �i = 1, . . . ,5� , �A1�

where gij
e and Wj

e are the jth node value and the interpolation
function associated to the eth local element for the ith coef-
ficient of the Q tensor matrix, respectively. The symbol q̃i
denotes an approximate solution of qi which is usually dif-
ferent from the exact one. The form of the Wj

e is well defined
and, for example, for a second-order shape function inside a
triangle element is

Wj
e�x,y� = aj

e + bj
ex + cj

ey + dj
ex2 + ej

ex · y + f j
ey2

�j = 1, . . . ,m� , �A2�

the aj
e, bj

e, cj
e, dj

e, ej
e, and f j

e are coefficients that are deter-
mined by the node coordinate values and by the area of the
triangle. Inserting q̃i

e into Eq. �8� we can define the residual
Ri

e, the error of the interpolation, in each element �e,

Ri
e =

�D̃e

�qi
+

1



�Fb�qi

e �i = 1, . . . ,5� , �A3�

where

�Fb�q̃i

e =
�F̃t

�qi
+

�F̃d

�qi
+

�F̃e

�qi
−

�

�xj
� �F̃d

�qi,j
� −

�

�xj
� �F̃e

�qi,j
� .

The exact solution occurs only when Ri
e is equal to zero in

each element. Due to the above approximation, the residual

FIG. 6. Time sequence of the biaxiality around the defect for the
electric amplitude Ea=14 V /�m at t=42 �s �a�, at t=45 �s �b�,
at t=50 �s �c�, and at t=150 �s �d�. The electric field is applied
along the z axis.
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Ri
e always leads to a nonzero value. However, with Galer-

kin’s method, the residual Ri
e can be minimized in each ele-

ment through weighting the residual Ri
e by the interpolation

functions Wj
e that are the same shape functions used to inter-

polate Q as



�e

Ri
eWj

ed�e = 0, i = 1, . . . ,5 and j = 1, . . . ,m .

�A4�

Substituting q̃i
e in the above equation and expanding it with a

time difference scheme leads to

�qi
e�t+�t = �qi

e�t + �t�Ae�−1�be�, i = 1, . . . ,5, �A5�

where �¯� denotes a matrix and �¯� denotes a vector, and
for the ith element of the tensor order parameter Q one ob-
tains that

Alm
e = 


�e

Wl
eWm

e d�e, �A6�

bm
e = − 


�e

1



�Fb�q̃i

e Wm
e d�e. �A7�

As a result, the matrix Ae is symmetric, and its element val-
ues depend only on the geometry and the interpolation func-
tions. Ae only needs to be calculated at the first iteration step
and can be stored for the subsequent iteration steps. By ap-
plying the assembling process typical of a FEM procedure,
the global matrix A and the global vector b can be obtained
from the element matrix Ae and the element vector be �16�.

b. Potential update formulations via Ritz’s method

Once the Q tensor distribution is known inside the cell for
the prescribed boundary conditions, the distribution of the
electric potential inside the cell can be calculated by solving
the Gauss law �22�, or minimizing the electric energy system
from a variational point of view. In our simulations we use
the Ritz’s method �15� to minimize the system electric en-
ergy, which inherits a more apparent physical and math-
ematical meaning than to apply the Galerkin’s method in

solving the Gaussian law. The electric energy Fe in the stud-
ied domain is equal to

Fe = −
1

2



�

D · Ed� . �A8�

Substituting D with the constitutive Eq. �13� and ensuring
the conservative of electric field we restate �A8�,

Fe = 

�

1

2
�0�− � � U +

2Ps

�0
� · �Ud� . �A9�

The approximate global potential solution Ũ can be ex-
pressed by the global node value Uk and global interpolation
function Wk as

Ũ = �
k=1

N

UkWk. �A10�

Thus, Fe is a function of N global variables Uk�k
=1,2 , . . . ,N�. To find an equilibrium solution for U, it is
necessary to find a minimum of Fe. This leads to N equations
as

�Fe

�Uk
= 0, k = 1,. . .,N . �A11�

This equation system can be further expressed as a matrix
representation

�B��Ũ� = �p� , �A12�

where, again �¯� denotes a matrix and �¯� denotes a vector.
The matrix B is symmetric because the tensor dielectric � is
a symmetric matrix. In particular the elements of B and p
are, respectively,

Bkh = �0

�

� �Wk

�x1
,
�Wk

�x2
,
�Wk

�x3
� · ��� �Wh

�x1
,
�Wh

�x2
,
�Wh

�x3
�T�d� ,

�A13�

pk = 

�

2Ps

�0
· � �Wk

�x1
,
�Wk

�x2
,
�Wk

�x3
�T

d� . �A14�
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